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A typical neutronics workflow MANCHESTER

The University of Manchester
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Measuring complexity in geometry MANCHESTER
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* Real-world models need to be defeatured prior to

runnlng a SimUlation #79 = EDGE CURVE ('',#72,#80,4#82,.T.);

#80 = VERTEX POINT('',#81);

#81 = CARTESIAN POINT ('', (10.,10.,10.));
#82 = LINE('',#83,#84);

#83 = CARTESIAN POINT ('', (10.,10.,0.));
#84 = VECTOR('',#85,1.);

#85 = DIRECTION('', (0.,0.,1.));

#86 = ORIENTED EDGE('',*,*, #87,.F.);

#87 = EDGE CURVE ('', #64,#80,#88,.T.);
#88 = LINE('',#89,#90);

#89 = CARTESIAN POINT ('', (10.,0.,10.));

* Defeaturing is manual and often error-prone

* We want to automate defeaturing, but that requires
understanding geometry complexity

* We need quantifiable metrics to decide when to

) Graph representation
* To do this..

« We implement the complexity measurement introduced CLOSER SR
in [, comparing quantifiable metrics with so-called

expert grading ADVANCED_FACE
* Includes graph- and geometry-based metrics, applying — T
them to STEP files PLANE FACE_BOUND
AXIS_PLACEMENT EDGE_LOOP
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Methodology: quantifying model complexity MANCHESIER
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Metric name Description (to ;::tiir:;:rngfging)
Cyclomatic complexity|No. ofindependent paths through the graph 0.804
:cc))::qpoliiirtzv String length when the graph is encoded as a binary string 0.801
Graph entropy Description of graph uncertainty 0.799
Graph size No. of nodes in the graph 0.792
Number of faces Total number of individual faces in model 0.762
Graph dependencies [No. of edges in the graph 0.755
Number of vertices Total number of individual vertices in model 0.713
Cube ratio 1-aCube/Surface, aCube is area of a cube with the same volume as the model 0.428
Sphereratio 1-aSphere/Surface, aSphere is area of a sphere with the same volume as the model 0.428
Volume ratio 1-Volume/bBoxVol, bBoxVolis volume of the bounding box of the model 0.414
Volume/area ratio Ratio of surface area/object volume -0.06
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Methodology: simulation of a toy case
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Case: A‘box’ of plasma with the sample geometry at centre
* Input:

Geometry from the MFCAD++ dataset [?1, converted to CSG using
GEOUNEDE

2 sets: one with protrusions and another with holes
Simulation configurations

Source: Isotropic IndependentSource, located at (0,0,0)

* Energy: Muir distribution @14.1MeV mean, M,,.=5AMU, k,=20000eV
* Materials:

(EUROFER97)
* Enclosure: W (100%),

D-T plasma
Sample: EUROFER97 (composition as per ) i
Environment:

y (em)

Enclosure
ARCHER2, standard partition, 16 cores per task N
Measured simulation outcome:
 Tallies:

* Flux: VITAMIN-J-175 energy group
* Runtime

Measured as per OpenMC timing variables

9)OpenMC
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Results: starting simple MANCHESTER
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NumFeatures vs NumFaces NumFeatures vs NumFaces
(Protrusion Geometry) (Holes Geometry)
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More features -> more faces (easy enough to understand!)
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Results: runtime (protrusions)
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Vs writing statepoints

0 200

400
NumFaces

More faces -> more runtime (but only in transport-related phase of simulation)
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Results: runtime (holes) MANCHESIER
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NumFaces vs..

vs transport vs accumulating tallies Vs writing statepoints
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Similar phenomenon here, but transport runtime drops at a steep gradient
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Results: runtime (holes)
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In summary, more features -> more faces -> more runtime.
But also remember that number of faces ties in with practitioner-based complexity grading
(what CAD practitioners think a complex geometry is)
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Results: flux on material sample MANCHESTER
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Correlation of Flux per Neutron Energy with Complexity Metrics Correlation of Flux per Neutron Energy with Complexity Metrics
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Results: flux on enclosure MANCHESTER
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Correlation of Flux per Neutron Energy with Complexity Metrics Correlation of Flux per Neutron Energy with Complexity Metrics
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* What CAD practitioners think a ‘complex geometry’ is may not
significantly impact actual neutronics results.

* The strongest correlated metrics to expert-based grading do not affect
neutron transport results.

* However, the more complex a geometry is, the longer the runtime will be
during the transport-related phase.

* Results may be influenced by overall shape compactnhess and
deviation from simple forms like spheres and cubes
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End of presentation
Thank you and questions
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e Extra slides
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CSG vs DAGMC neutronics

In CSG, each ‘cell’ is made up of regions defined in mathematical functions.
* Cells contain material property (composition, density, temperature, etc)

Take a cell made up of an infinite cylinder parallel to the x-axis:

fO,y,2) = (v —v0)% + (z—2)>—R?2 =0 f(x,y,2) =0
We plugin: (atboundary)

* Cylinder’s origin for yy and z,, and radius for R
* Particle’s coordinates (x, y, z)

If the resultis less than zero, particle is inside the cylinder (‘negative half-space’)
* Otherwise, it is outside (‘positive half-space’)

Particles can be lost due to:
* Celloverlaps
* Gaps of undefined regions

Interaction events (collision, absorption, fission) calculated based on material
property of the cylinder region

Conversion from CAD is not straightforward — many CAD geometry has splines!
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.

(

Z

f(x,v,z) <0
(inside cyl)

f(x,y,2z) >0

/////////////////////////
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CSG vs DAGMC neutronics

* In DAGMC, each ‘cell’ is defined by a volume bound by a surface meshl']
* Cells contain material property (composition, density, temperature, etc)

* Each mesh facet belongs to a surface, which belongs to a volume
* Surfaces contain ‘sense tags’ with indicate previous & next volume

* We determine a particle’s location by recording which facet it has crossed
* From there, we can infer the surface and therefore the volume it is in
* Has added benefit of not requiring negative space definition

* Particles can be lost due to:
* Overlaps & undefined regions
* Non-manifold geometry
* Poor mesh quality
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Surface 2
Fr———=—=—=-== 1
I Sense tag:

Forward volume: Vol 1

I Reverse volume: Vol 2

— e o mm g = mm mm =

* Interaction events (collision, absorption, fission) calculated based on material

property of the volume region

* Conversion from CAD relatively simple — only meshing & file conversion needed

TRIPOLI-4® @hKA
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