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A. J. Creely and others

Introduction: What is ARC and AR T e
How does ARC breed tritium? 2'

PF3

* CFSis currently constructing SPARC [1]: a compact, high-

field tokamak using high-temperature superconductors
(HTS)

Goal: produce fusion gain Q > 2. No contribution to electrical grid
°*  Major radius: 1.85 m

-3 T T T T T T T
0.0 0.5 1.0 15 2.0 25 3.0 35 4.0

L A RC 2 is a Si m i | a r to ka m a k to S PA RC b ut a d e m O n St ra t i O n FIGURE 2. SPARC V2 poloidal cross—section.R"lf':; toroidal field coil is light grey. The central
4

solenoid and poloidal field coils are blue. Error-field correction coils are orange-red. The vacuum
f H 1 | I vessel is dark grey. The ICRH antenna is pink. The divertor and first limiting surfaces are black.
u S I O n p I Ot p Owe r p a nt Vertical stability plates are green. The plasma separatrix is red.
~ .
° 1,000 MW of fusion power

ARC uses an all-liquid blanket of low pressure, slowly flowing FLiBe ARC
molten salt

Nproduced
*  Tritium breeding ratio W >1.1
T

°  Major radius: ¥4.5 m

Creely AJ, Greenwald MJ, Ballinger SB, et al. Overview of the SPARC tokamak. Journal of Plasma Physics. 2020;86(5):865860502.
doi:10.1017/50022377820001257

2Sorbom, B. N., et al. ARC: A compact, high-field, fusion nuclear science facility and demonstration power plant with demountable magnets. United
States: N. p., 2015. Web. doi:10.1016/j.fusengdes.2015.07.008.

Figure 1: The ARC reactor, shown with the plasma in yellow and the TF superconducting tape in brown. Note the neutron shield is omitted for viewing clarity. Also

April 8, 2025

note that although the ARC design is based on a diverted plasma, the physical divertor design was left for later stu

Commonwealth Fusion Systems vessel is shown here.

dy and a simplified representation of the vacuum



Objectives

* Assess the sensitivity of the tritium breeding ratio (TBR) to key ARC tokamak design parameters

* Maintain design flexibility during early-phase ARC development by identifying parameters with the
greatest impact on TBR

* Use simplified OpenMC simulations to efficiently generate a wide range of ARC design perturbations
* Build a comprehensive TBR dataset that spans the relevant multidimensional design space

* Train a machine learning surrogate model (TransformerTBRNet) to predict TBR for arbitrary, unseen
design points

* Ensure the surrogate model operates in a well-populated interpolation regime, avoiding extrapolation

April 8,2025 Commonwealth Fusion Systems
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Methodology

S\
“w
OpenMC Methodology
[ ) \
Randomly _
sample ARC Build OpenMC
configuration

model using
configuration

Run OpenMC;

Tally TBR
parameters

Sensitivity studies
for determination of
Library of TBR most influential
values for Train neural network
unique ARC TransformerTBRNet
models

design parameters
on TBR
\

f

)

Machine Learning Methodology

April 8, 2025
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Sensitivity
- - tudies for
Randomly Build Library of studles |
Run . determination of
OpnenMC Methodolo semple ARG opentic o e N e eterminaton o
configuration model using Tally TBR for unique network design
parameters configuration ARC models parameters on
TBR
®  Each ARC configuration is defined by a random draw from the sample space of design parameters shown for the definition of a unique
tokamak configuration
®  Sampling was performed uniformly and independently across each parameter’s allowed range
®  Each configuration is passed to the automated model builder, which generates a fully resolved OpenMC geometry
([ J

This approach enables broad coverage of the design space, supporting both sensitivity analysis and surrogate model training

Perturbed Parameter
Lithium-6 enrichment
Multiplier

Structural Material
Neutron Shield Material
First Wall Thickness

VV Inner Thickness
VVCC Thickness

VV Outer Thickness
Multiplier Thickness

(if present)

Port Axial Extent

Port Toroidal Extent
Fraction of FLiBe displaced by structural material
FLiBe Impurity Fraction

April 8,2025 Commonwealth Fusion Systems
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Sensitivity \\ “/
Randomly Build RUN Library of detztrun?ilr?;{c?:l of ) 24
sample ARC OpenMC . TBR values Train neural . ) = =
! ; - : OpenMC; - most influential ~, Ny,

configuration model using for unique network : / \

: . Tally TBR design
parameters configuration ARC models
parameters on
TBR

® Leveraged an automated ARC model builder to translate
configuration files into fully defined OpenMC [1] models, with

lightweight level of detail .’openMC i

® Geometry constructed using constructive solid geometry
(CSG) with extensive use of openmc.model.Polygon for 300
complex tokamak components

200

®  Employed ENDF/B-VIII.O [2] nuclear data for all neutron
interaction cross sections

1078

® Tallied tritium production using OpenMC’s built-in "H3-
production" score in regions containing FLiBe

Z (cm)
o

-100

®  Each simulation run used 5 batches of 20,000 histories,
balancing accuracy and speed

-200

® Achieved an average runtime of ~0.4 CPU-minutes per
simulation

-300

-400 10-10

® The mean 1o standard deviation on TBR predictions was

300 350 400 450 500 550 600 650 700

0.00328, ensuring high-fidelity data for ML training R (em)
OpenMC rendering of an example ARC iteration. R-Z mesh tally for relative distribution
Yellow-orange indicates molten salt blanket. of “H3-production”

1Paul K. Romano, Nicholas E. Horelik, Bryan R. Herman, Adam G. Nelson, Benoit Forget, and Kord Smith, “OpenMC: A State-of-the-Art Monte Carlo Code for Research and Development,” Ann. Nucl. Energy, 82, 90-97 (2015).
2D.A. Brown, M.B. Chadwick, R. Capote, et al., "ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data", Nuclear Data Sheets, 148: pp. 1-142
(2018).
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e Nimonic_PE_16, FLiBe

* Nimonic_PE_16, Lead

Library of
TBR values
for unigue
ARC models

Eurofer97, FLiBe
Eurofer97, Beryllium

Nimonic_PE_16, Beryllium

V_4Cr_4Ti, Lead
Eurofer97, Lead

V_4Cr_4Ti, Beryllium

- Randomly Build Run
sample ARC OpenMC .
) ) ) OpenMC;
configuration model using
. . Tally TBR
parameters configuration
Material Combinations
Structure, Multiplier
* D9, Beryllium
. * V_4Cr_4Ti, FLiBe
& o ° -
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- ® '\"' ..' 10 8 .‘. oo o 5 °
¥ RrSrd e p2e
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Enrichment Fraction
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Sensitivity
Q\

studies for

determination of

.
Train neural . ) —
most influential ~,

network :> design /’.

parameters on

TBR

®* Normalize TBR to the
maximum in the
library

N lized TBR = TBR
ormalize = m
®* Plot shows the
entirety of the TBR

library categorized
by structural
material and
multiplier material

® The enrichment
fraction is relative to
natural abundance

mean 10 standard deviation on TBR predictions = 0.00328
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TransformerTBRNet

Randomly Build
sample ARC =>| OpenMC
configuration model using

parameters configuration

Run Library of
. TBR values
OpenMC; for unique
Tally TBR ARC models

accelerated training, and flexible experimentation with transformer-based architectures.

Data was split into three sets:

70% Training set: Used to fit model weights

15% Test set: Held out entirely until final evaluation

15% Validation set: Used to monitor generalization performance during training

Input Features

Size =21

Parameters of
ARC design

¥

Linear
Embedding

Layer

Projects raw input
vector (design
parameters) into
higher-
dimensional
space (128)

b

Add Positional
Encoding

Injects positional
information (even
for non-sequential

/ tabular inputs)

Transformer
Encoder Blocks

2 layers
Multi-head
Self-Attention
Feedforward
Layer
(dim=256)
LayerNorm &
Dropout (0.1)

Input features include both numerical parameters and one-hot encoded material selections

All sets were normalized using the same scaler, fitted only on the training data, to prevent data leakage

Average Pooling

Across

Sequence
Dimension

Reduces
(batch_size x
seq_len x
embed_dim) —
(batch_size x
embed_dim)

Train neural
network

Sensitivity
studies for
determination of
most influential
design
parameters on

The TransformerTBRNet architecture was implemented using the PyTorch [1] deep learning framework, enabling efficient model definition, GPU-

O PyTorch

Splitting performed using scikit-learn’s train test split with afixed random seed (random_state=42) to ensure reproducibility

Validation and test sets were drawn separately from the same 30% pool, ensuring the model never sees the test data during training

Feedforward
MLP Head

Linear (128—
64)

RelLU

Linear (64—1)

Output

TBR
Prediction

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., ... & Chintala, S. (2019). PyTorch: An imperative style, high-performance deep learning library. Advances in Neural Information Processing Systems, 32, 8024-8035.
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TransformerTBRNet

Loss Criterion: L1 Loss = Mean
Absolute Error (MAE)

1 N
L=5 ), =i
=1

y; : true target TBR (OpenMC)

y; : model prediction
(TransformerTBRNet)

N : Number of samples in batch
(512)

Optimizer: Adam Optimizer

M
\/ﬁ_t+e

O¢ : each parameter at time step t

Ot =0t~

« : learning rate = 1E-4

mg, Uy bias correction

April 8, 2025

L1 Loss (log scale)

Sensitivity \\ ’ y
Randomly Build Run Library of detztrurgilr?zit{g:] of : L
sample ARC OpenMC . TBR values Train neural : ) = =
) ) ) OpenMC,; - most influential VY "

configuration model using for unique network . / \

. . Tally TBR design ’ \
parameters configuration ARC models
parameters on
TBR
— Train Loss Compute Tlme:

. Validation Loss ) )
Model trained on a single NVIDIA

Tesla T4 GPU

Total training time: 15 minutes

1071 4 (~0.25 GPU-hours)
Estimated compute: ~16.25
TFLOP-hours (mixed precision)
Approx. energy consumption:
~17.5 Wh

-2
107773 Training completed efficiently due
] to model simplicity and dataset

size

Epoch 998/1000 - Train Loss: 0.0035, Val Loss: 0.0044
Epoch 999/1000 - Train Loss: ©.0035, Val Loss: 0.0042
Epoch 1000/1000 - Train Loss: 0.0035, Val Loss: 0.0040

Ultimately the surrogate model produces L1 loss comparable to

OpenMC mean 10 standard deviation on TBR predictions = 0.00328

Commonwealth Fusion Systems 10



Sensitivity

TransformerTBRNet N R N TR N NN o
sample pen enMC; V? ues most influential
D1 e [P wolions [P 0 [P feovs [ o
Predictions & Results
N lized TBR bR
ormalize = —_—
max|[TBR]
0.85
__________ Varying two parameters that provide
osod 7 == T significant impact to the TBR
— T T T ® Li-6 enrichment
& 0.75
= T P ®  Structural material choice
= | [ S T e
L L L T
No74 ,/ 7 e
0
£ Keeping other variables constant
o [} 65 - . . . .
< ®  Shielding material = boron carbide
. Structure Material . o
060 V 4Cr 4Ti No multiplier
' — [E)";mferg? ®  Nominal port size
0.554 - .-+ Nimonic_PE_16 ®  Nominal VV dimensions
0.0 0.2 0.4 0.6 0.8 1.0
Enrichment Fraction
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Sensitivity

- - studies for
Randomly Build Run Library of ) determination of
TransformerTBRNet sampieArc LM openic Run 5 valves Train neural fetermination
configuration model using T:II TBR, for unique => network S
- - parameters configuration y ARC models paramet?ers o
Predictions & Results
N lized TBR bR
ormalize = —
——————————————— max|[TBR]
0.90 4 Pl " — Varying two parameters that provide
' significant impact to the TBR
® Li-6 enrichment
o —
B 0.851 ®  Multiplier layer embedded in the
T Vacuum vessel cooling channels
|
ﬁ ° Hence the cooling channels’ volume is
duced with Itipli
E ﬁaﬂ n reauced wi more multiplier
o
2 . l - -
Multiplier Material & Thickness
—— No Multiplier Keeping other variables constant
0.75 - — Beryllium, 15 mm
— — Beryllium, 22 mm ®  Shielding material = boron carbide
— Lead, 15 mm . .
—— Lead, 22 mm ®  Vanadium alloy structural material
[}'?ﬂ L T T T T T T . .
0.0 0.2 0.4 0.6 0.8 1.0 ® Nominal port size
Enrichment Fraction . . . .
® Nominal VV dimensions, slightly
enlarged cooling channel volume
April 8, 2025 Commonwealth Fusion Systems 12



Normalized TBR

Sensitivity

studies for

Randomly Build R Library of determinati f
TransformerTBRNet sample ARC. |- Opentic R TBR values Train neural itz
configuration model using T P”enTBR, for unique => network mosdln ;uentia
- - parameters configuration aly ARC models paran?:t?e?s on
Predictions & Results
0.90 _ TBR
Parameter Normalized TBR = ————
o _ max|[TBR]
= Li-6 enrichment fraction
0.88 -
- = Toroidal port extent x — min[x]
— . Axial port extent Normalized Parameter = ] ]
0.86 1 maxi|x min|x
. Volume fraction of
structural material in blanket Varying parameters individually,
0.847 . Mass fraction of normalize from max to min of each
impurities in blanket
0.82 —— First wall thickness Keeping other variables constant
- Inner vacuum vessel
thickness
0.80 - Vacuum vessel cooling channel ) .. )
" thickness Use a beryllium multiplier in the cooling
Quter vacuum vessel Channel
0.78 1 thickness
WVolume fraction of cooling channels
0.76 - ~ 7 occupied by multiplier
' Sensitivity coefficients on next slide
0.74 1 It is clear how much more impactful Li-6
: : : : : : enrichment is relative to other design
0.0 0.2 0.4 0.6 0.8 1.0 parameters
Normalized Parameter Value
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. . i O\
TransformerTBRNet ametie b o b ot ¢| e by T o
L. parameters configuration ARC models | desion

Predictions & Results s

Parameter sensitivity ranking (by absolute slope): 5| _TBR ]

Li-6 enrichment fraction _ Sensitivity Factor = me[T.BEQ ]]

Axial port extent -0.052 0 lmax[x]nlnrlnfn[x]]

Toroidal port extent -0.051

Volume fraction of cooling channels occupied by multiplier 0.046

Outer vacuum vessel thickness -0.035

Vacuum vessel cooling channelthickness 0.031

Volume fraction of structural materialin blanket -0.022

First wall thickness -0.018

Inner vacuum vessel thickness -0.015

Mass fraction of impurities in blanket -0.003

April 8,2025 Commonwealth Fusion Systems 14



Conclusions

L4 Successfully generated a large, high-quality dataset of TBR values using a streamlined OpenMC
modeling framework with automated ARC geometry perturbations

L4 Developed and trained a neural network surrogate model (TransformerTBRNet) capable of
predicting TBR values across a multidimensional design space with high accuracy

Q, Used the surrogate to systematically evaluate TBR sensitivity coefficients, quantifying the relative
Impact of various design parameters

&5 Demonstrated a structured approach to assess the influence of material selections and
geometric features on TBR response

< Enabled the efficient exploration of design tradeoffs by varying model parameters and observing
predicted responses in TBR

Confirmed the capability of using automated neutronics pipelines to handle statistically
meaningful variation across complex tokamak components

& Verified that the surrogate model operates within a well-interpolated region of the design space,
supporting reliable predictions without extrapolation risk

April 8,2025 Commonwealth Fusion Systems
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Future Work

“ Incorporate realistic temperature profiles in the FLiBe blanket model to capture temperature-
dependent neutron cross sections and fluid behavior

% Study the impact of geometry of both the vacuum vessel and blanket, including shaping and
segmentation, on neutron streaming and breeding efficiency

&5 Evaluate alternative blanket and shield geometries, particularly reshaping or re-optimizing the inboard
neutron shield to balance tritium breeding and magnet protection

Include more detailed isotopic and chemical effects, including usable tritium molecular formation and
transport behavior

=] Model time-dependent effects on TBR, such as burnup, irradiation damage, and material evolution
over ARC lifetime

€. Improve surrogate model interpretability with tools like SHAP and uncertainty quantification

%~ Use the surrogate model in automated design optimization to identify TBR-compliant ARC
configurations with minimal cost or material burden

April 8,2025 Commonwealth Fusion Systems
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