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Overall Aim of Renaissance Fusion:  
Build a compact stellarator with Liquid Metal first wall

Major 
radius 𝑹

On axis 
field 𝑩

Aspect 
ratio 𝑨

Plasma
volume 𝑽

Reactor Power 
𝑷

3.8 m 10.2 T 4.1 65 m3 1 GWe

liquid metal (Pb + Li-LiH)
neutronic shielding (TiH2, VH2) 

Fama, F. et al. – 2022 - An optimized power conversion system for a stellarator-based nuclear fusion power plant
Prost, V., Volpe, F. A. - 2024 - Economically optimized design point of high-field stellarator power-plant

Prost, V., Ogier-Collin, S., Volpe, F. A. - 2024 - Compact fusion blanket using plasma facing liquid Li-LiH walls and Pb pebbles
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Blanket functions : 

1. Heat removal
Extract heat from the plasma and transfer to the 
power conversion system

2. Tritium breeding
Produce tritium to fuel the fusion reaction – tritium 
breeding ratio (TBR)

3. Radiation shielding
Protect structures, coils, and environment from 
radiation damages



1D neutronic model provided initial results but relied on 
simplistic cylindrical geometry

* Prost, V., Ogier-Collin, S., Volpe, F. A. - 2024 - Compact fusion blanket using plasma facing liquid Li-LiH walls and Pb pebbles

Functions and 
requirements Targets Designed

Heat removal -
> 92 % nuclear 

heat on LM 
layers

Energy multiplication ≥ 1.0 1.1

Tritium breeding ratio ≥ 1.15 1.6

Total fluence on HTS 
coils < 1019 n/cm2 0.9 1019 n/cm2

LM vessel DPA < 200 DPA ~100 DPA

Magnet structure DPA < 200 DPA < 1 DPAN
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Primary 
confinement 

vessel

OpenMC  - ENDF/B-VII.1

R = 3.8m
a = 0.9m 
A = 4.1

91cm
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Limitations:
- Parametric manual search/optimization (long)
- 1D geometry is an initial guess but we need a 
more robust and generalizable tool

40 years with 80% availability



Developed a torus shape neutronic module to be 
included in stellarator systems code

Neutronic model

Performance:
- Accurate evaluation of the material 

configuration
- Fast evaluation of the reactor performance

FIXED

CONSTRAINED 
TARGET 

PERFORMANCE

THICKNESS TO 
MINIMIZE

Input:
- Reactor major radius
- Reactor minor radius
- Fusion power
- Blanket material thicknesses

Output:
- Tritium breeding ratio
- Energy multiplication
- Power deposited in LM layer
- Neutron flux
- Radiation damage

4

Neutronic module in the System Analysis 

Solution:
- Surrogate model for the high-fidelity neutronic 

model 
- Optimization loop



Reduced ML model optimisation scheme
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Neutronic 
simulations

(~10-30mins)

Reduced ML 
model (~ms)

Genetic 
algorithm 

optimization

Parametric Torus

Plasma

Low aspect ratio 
stellarators

Plasma

Spherical 
tokamaks

Parametric D-
shaped torus

Verification with 
High fidelity 

code



Input data for ML – generation of 20 000 configurations

Generation: 

• Tallies output with tagged UUID result file 

• Decrease 1 run time from days => tens of minutes => few minutes 

• About 2 full weeks to generate the input data for ML

min,      max,      discretization

Reduced angle: 18°

*https://inis.iaea.org/records/231pm-zzy35

- Reduced angle: profiting of the symmetries with 

- Variance Reduction with Pre-build feature MAGIC*
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Parameters Min Max Discretisation
Reactor [cm]

Minor Radius 50 200 10
Major Radius 300 600 10
Eccentricity 0 15 0.5

Blanket [cm]
Lead 1 20 0.5
LiLih 5 45 0.5
SiC 5 5 0.5
VH2 10 60 0.5

Steel (Boronated) 10 10 0.5
REBCO baffers 0.0441 0.0441 0.0441

Steel (Boronated) 40 40 0.5

Parameters variations: Acceleration of the simulations 

VARIED

VARIED

VARIED



ML model accurately predicts neutronic simulations
Configuration data : 
R | r | ecc |layers ( material, thickness)

Formalized in a 700 elements vector for layer configuration 
(discretization at 0.5 cm) with material coding

• Train and Test sets: 80%, 20%

• Training time: 30 minutes with 16 cpus

• Comparison with “Reference case”:

• The uncertainties are under control 
regarding the constraints' precision and 
model accuracy

Quantity Diff {Pfus=1.8GW, R=3.8m, 
r=0.9m} 

TBR 4.4%

Energy Mult 0.9%

Energy removal [%] 0.7%

Fluence on Coil [cm2/n] 26.8%

DPA on coil [dpa/n] 30.9%

DPA on Liquid metal [dpa/n] 46.0%
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Pb,  2cm LiLih,  3cm SiC,  1cm

1 1 1 1 2 2 2 2 2 2 3 3 3

Geom

Optimization : Adam at learning rate 2E-3

layer Activation Constraints Units Batch 
Normalization

Dropout 
(Rate)

Input - - 703 - -
Dense ReLU L1, L2 256 Yes 0.3
Dense ReLU L1, L2 128 Yes 0.3
Dense ReLU L1, L2 64 Yes 0.3
Dense ReLU L1, L2 32 Yes 0.3
Output ReLU L1, L2 6 - -

Results data : 

TBR | Energy mult | Heat removal| Fluence on coils |  DPA on coils structure| DPA LM vessel

Machine learning Model:



Genetic Algorithm for a minimal blanket – Get results in 15 min
Set the input reactor parameter for a minimal blanket

min,      max,      discretization

Performance:
 About 15 minutes per 16 CPUs.

 Verification
 High Fidelity code

8

Reactor parameter
Pfusion, Major radius, Minor radius, Eccentricity

Blanket [cm]
Parameters Min Max Discretisation

Lead 1 20 0.5
LiLih 5 45 0.5
SiC 5 5 0.5
VH2 10 60 0.5

Steel (Boronated) 10 10 0.5
REBCO baffers 0.0441 0.0441 0.0441

Steel (Boronated) 40 40 0.5

Category Parameters

Genetic 
Algorithm Population Size: 2000, Generations: 15, …

Optimization 
Weights

TBR: 1.0, Energy Multiplication: 1.0, Heat Removal: 1.0, 
Fluence HTS: 1.0, DPA HTS: 1.0, Thickness: 1.0

Target Values
TBR: 1.15, Energy Multiplication: 1.0, Heat Removal: 
95.0, Fluence HTS: 1.0e+19, DPA LMS: 200.0, DPA HTS: 
200.0

Additional 
Parameters

Thickness Penalty Weight: 1.0, Adaptive Penalty: Min 
Weight: 0.1, Max Weight: 1000.0

* A weighted 𝛼– fair allocation , Mo and Walrand 2000

Set the input Genetic Algorithm parameters

Implementation : α-Fair allocation* principle 
Suppose 𝑥 = 𝑥 𝑛  chosen to

Maximise   σ𝑟 𝜔𝑟
𝑥𝑟

1−𝛼

1−𝛼

Subject to   σ𝑟 𝐴𝑗𝑟𝑛𝑟𝑥𝑟  ≤  𝐶𝑗 ;  𝑗 ∈ 𝐽

   𝑥𝑟 ≥ 0 ; r ∈ 𝑅



Surrogate models for 3D stellarator and tokamak predict 
neutronic simulations within tens of percent

min,      max,      discretization

Quantity 3D
High Fidelity

3D 
Surrogate Differences

TBR                   1.52 1.66 -8.4%
Energy Multiplication 1.21 1.19 1.4%

Heat Removal          93.7 95.2 -1.7%
Fluence HTS (cm²/s/n) 7.20E-11 1.18E-10 -39.2%

DPA HTS (dpa/n)       1.55E-32 2.44E-32 -36.6%
DPA LM (dpa/n)        2.22E-28 2.52E-28 -12.2%

Plasma

Added 
shielding

Plasma

Parametric Torus
 with eccentricity 

Low aspect ratio 
stellarators

Spherical 
tokamaks

Parametric D-
shaped torus* 

Quantity 3D
High Fidelity

3D 
Surrogate Differences

TBR 1.64 1.66 1.5%
Energy multiplication 1.20 1.20 0.2%

Heat removal 94.5 96.7 2.4%
Fluence HTS [cm2/n] 4.73E-11 5.31E-11 12.2%

DPA HTS [DPA/n] 1.65E-32 2.27E-32 37.6%
DPA LM [DPA/n] 5.09E-28 2.13E-28 -58.1%

9*Preliminary investigation of neutron shielding compounds for ARC-class tokamaks Fusion Engineering and Design 185  (2022) 113335



Optimization Module align with the Reference case 

min,      max,      discretization

Plasma

Parametric Torus
 with eccentricity 

Low aspect ratio 
stellarators

Thickness [cm] Reference* 3D 
Surrogate Status

Lead 10 11 Optimized
LiLih 22 22 Optimized
SiC 5 5 Fixed
VH2 54 53 Optimized
Steel 10 10 Fixed
HTS 0.04 0.04 Fixed
Total 101 101

*Compact fusion blanket using plasma facing liquid Li-LiH walls and Pb pebbles  Journal of Nuclear Materials 599(3):155239 10

https://www.researchgate.net/journal/Journal-of-Nuclear-Materials-0022-3115?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19


Reduced ML model optimization scheme highlights 
benefits for high power reactors (1 GWe vs 100 MWe)
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Neutronic 
simulations
(~1-30mins)

Reduced ML 
model (~ms)

Genetic 
algorithm 

optimization

Low aspect ratio 
stellarators
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X2 in fusion power → ~5/6 cm  increase thickness 
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Model optimization scheme shows limited impact of reactor’s aspect ratio
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Neutron flux scales with ~ A-1/3

With constant volume (100 m3 ) and power (2 GW)
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Take aways

▪ Machine learning model developed for rapid neutronics performance prediction

▪ Genetic algorithm used to optimize blanket configuration

▪ Key findings:
▪ Efficient optimization of blanket thickness and composition
▪ Slight increase in blanket thickness needed for higher fusion power
▪ Limited impact of reactor aspect ratio on neutronics performance

▪ Methodology enables rapid, optimized design for compact fusion reactors

▪ Studies (scan over aspect ratio and run power) within hours range instead of multiple days with 
manual search

▪ Potential for extension to other reactor design aspects
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